Activation of 5-HT1A receptors in the paragigantocellularis lateralis decreases shivering during cooling in the conscious piglet.

نویسندگان

  • J M Hoffman
  • J W Brown
  • E A Sirlin
  • A M Benoit
  • W H Gill
  • M B Harris
  • R A Darnall
چکیده

Activation of 5-HT(1A) receptors in the medullary raphé decreases sympathetic outflow to thermoregulatory mechanisms, including brown adipose tissue (BAT), thermogenesis, and peripheral vasoconstriction when these mechanisms are previously activated with leptin, prostaglandins, or cooling. These same mechanisms are also inhibited during rapid eye movement (REM) sleep. It is not known whether shivering is also modulated by medullary raphé neurons. We previously showed in the conscious piglet that activation of 5-HT(1A) receptors with 8-OH-DPAT (DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the midline raphé that contains 5-HT neurons, decreases heart rate, body temperature and muscle activity during non-rapid eye movement (NREM) sleep. We therefore hypothesized that activation of 5-HT(1A) receptors in the PGCL would also attenuate shivering and peripheral vasoconstriction during cooling. During REM sleep in a cool environment, shivering, carbon dioxide production, and body temperature decreased, and ear capillary blood flow and ear skin temperature increased. Shivering associated with rapid cooling was attenuated after dialysis of DPAT into the PGCL. In animals maintained in a continuously cool environment, dialysis of DPAT into the PGCL attenuated shivering and decreased body temperature, but there were no significant increases in ear capillary blood flow or ear skin temperature. We conclude that both naturally occurring REM sleep and exogenous activation of 5-HT(1A) receptors in the PGCL are associated with a suspension of shivering during cooling. Our data are consistent with the hypothesis that 5-HT neurons in the PGCL facilitate oscillating spinal motor circuits involved in shivering but are less involved in modulating sympathetically mediated thermoregulatory mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet.

Activation of 5-HT1A receptors in the medullary raphé decreases sympathetically mediated brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction when previously activated with leptin, LPS, prostaglandins, or cooling. It is not known whether shivering is also modulated by medullary raphé 5-HT1A receptors. We previously showed in conscious piglets that activation of 5-HT1A recept...

متن کامل

NSIDRC Journal Article Alert – April 2007

• Work schedule during pregnancy and spontaneous abortion. • Genetic evaluation of stillbirth in United States holsteins using a sirematernal grandsire threshold model. • Combining internal and external validation data to correct for exposure misclassification: A case study. • Activation of 5-HT1A receptors in the paragigantocellularis lateralis decreases shivering during cooling in the conscio...

متن کامل

Neurobiology of Disease Inhibition of Serotonergic Neurons in the Nucleus Paragigantocellularis Lateralis Fragments Sleep and Decreases Rapid Eye Movement Sleep in the Piglet: Implications for Sudden Infant Death Syndrome

Serotonergic receptor binding is altered in the medullary serotonergic nuclei, including the paragigantocellularis lateralis (PGCL), in many infants who die of sudden infant death syndrome (SIDS). The PGCL receives inputs from many sites in the caudal brainstem and projects to the spinal cord and to more rostral areas important for arousal and vigilance. We have shown previously that local unil...

متن کامل

The antinociceptive effect of 17β-estradiol in the nucleus paragigantocellularis lateralis of male rats may be mediated by the NMDA receptors

Introduction: The nucleus paragigantocellularis lateralis (LPGi) is involved in the descending pain modulation. The neurostreoid, 17β-estradiol found in the PGi nucleus and modulates nociception by binding to estrogen receptors and also by allosteric interaction with NMDA receptors. In this study, the role of NMDA receptors in the 17β-estradiol-induced pain modulation was investig...

متن کامل

The antinociceptive effect of 17β-estradiol in the paragigantocellularis lateralis of male rats is mediated by estrogenic receptors

Introduction: 17β-Estradiol is a neuroactive steroid and its pain modulatory role has been well studied previously. 17β-Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membrane - bound receptors such as glutamate and GABAA receptors. Paragigantocellularis lateralis (LPGi) is also involved in pain modulation and perception, in addition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 293 1  شماره 

صفحات  -

تاریخ انتشار 2007